4 research outputs found

    Exact Algorithm for the Capacitated Team Orienteering Problem with Time Windows

    Get PDF
    The capacitated team orienteering problem with time windows (CTOPTW) is a problem to determine players' paths that have the maximum rewards while satisfying the constraints. In this paper, we present the exact solution approach for the CTOPTW which has not been done in previous literature. We show that the branch-and-price (B&P) scheme which was originally developed for the team orienteering problem can be applied to the CTOPTW. To solve pricing problems, we used implicit enumeration acceleration techniques, heuristic algorithms, and ng-route relaxations

    Exact Algorithm for the Capacitated Team Orienteering Problem with Time Windows

    No full text
    The capacitated team orienteering problem with time windows (CTOPTW) is a problem to determine players’ paths that have the maximum rewards while satisfying the constraints. In this paper, we present the exact solution approach for the CTOPTW which has not been done in previous literature. We show that the branch-and-price (B&P) scheme which was originally developed for the team orienteering problem can be applied to the CTOPTW. To solve pricing problems, we used implicit enumeration acceleration techniques, heuristic algorithms, and ng-route relaxations

    Simulation and Experimental Investigation of the Radial Groove Effect on Slurry Flow in Oxide Chemical Mechanical Polishing

    No full text
    Slurry flow on the pad surface and its effects on oxide chemical mechanical polishing (CMP) performance were investigated in simulations and experiments. A concentric groove pad and the same pad with radial grooves were used to quantitatively compare the slurry saturation time (SST), material removal rate (MRR), and non-uniformity (NU) in polishing. The monitored coefficient of friction (COF) and its slope were analyzed and used to determine SSTs of 25.52 s for the concentric groove pad and 16.06 s for a certain radial groove pad. These values were well correlated with the simulation prediction, with around 5% error. Both the laminar flow and turbulent flow were included in the sliding mesh model. The back mixing effect, which delays fresh slurry supply, was found in the pressure distribution of the wafer–pad interface

    Simulation and Experimental Investigation of the Radial Groove Effect on Slurry Flow in Oxide Chemical Mechanical Polishing

    No full text
    Slurry flow on the pad surface and its effects on oxide chemical mechanical polishing (CMP) performance were investigated in simulations and experiments. A concentric groove pad and the same pad with radial grooves were used to quantitatively compare the slurry saturation time (SST), material removal rate (MRR), and non-uniformity (NU) in polishing. The monitored coefficient of friction (COF) and its slope were analyzed and used to determine SSTs of 25.52 s for the concentric groove pad and 16.06 s for a certain radial groove pad. These values were well correlated with the simulation prediction, with around 5% error. Both the laminar flow and turbulent flow were included in the sliding mesh model. The back mixing effect, which delays fresh slurry supply, was found in the pressure distribution of the wafer–pad interface
    corecore